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Pointers

● The Internet of Things is Wildly Insecure...
Bruce Schneier, Wired, January 2014

● Overtaken
Dan Geer, Lawfare Blog, May, 2014

● The Nightmare on Connected Home Street
Matt Honan, Wired, June 2014

● TAO Catalog
NSA Ant Division, 2008, Published December 30, 2013

● Familiarity Breeds Contempt: ...
Sandy Clark, Stefan Frei, Matt Blaze, Jonathan Smith, ACSAC '10

http://www.wired.com/2014/01/theres-no-good-way-to-patch-the-internet-of-things-and-thats-a-huge-problem/
http://geer.tinho.net/geer.lawfare.15iv14.txt
http://www.wired.com/2014/06/the-nightmare-on-connected-home-street/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://www.acsac.org/2010/openconf/modules/request.php?module=oc_program&action=view.php&a=&id=69&type=2


  

Software Lifecycle

● We are used to throwing computers away
– Your phone, laptop, desktops, etc.

– We've learned through great pain that we must keep them updated

● But we now build long lived devices and systems with 
computers inside, that are Internet connected
– Your thermostats, home theater, home router, home theater, security 

cameras, light bulbs, etc.   Soon car, refrigerators, coffee makers...

– Installation costs often greatly exceed cost of the computer

● Some devices have potential lifetimes measured in decades
– Timescales are long relative to human organizations

– We've presumed we can “forget about them”

– Is this safe? NO! The SCADA problem writ large

https://en.wikipedia.org/wiki/SCADA#Security_issues


  

Familiarity Breeds Contempt:
The Honeymoon Effect and the Role of Legacy 

Code in Zero-day Vulnerabilities
By Sandy Clark, Stefan Frei, Matt Blaze, Jonathan Smith, 
ACSAC '10

Figure 1



  

Device Lifetime is a Cruel Master
Honeymoon effect take-away

● You cannot leave software and devices “unmaintained”: continuous 
update is essential, for the life of the device

● Products (at least complex ones) MUST have SECURE update 
stream for the life of the device!  (Remember Windows XP!)
– You must select components that CAN be maintained

– You must select products that CAN be maintained

● The owner must have ultimate control! You must have ultimate power 
when the device/network/system fails.....
– How long will a device remain in the ecosystem? Your router? Your 

thermostat? Your light bulbs? Your car?  Your heating system?

● Who do you trust to provide updates? Today? Tomorrow? In 10 years?
– Long term, only community maintenance might possibly succeed

– Binary blobs leave you helpless and vulnerable, forever



  

Home Routers, Modems, etc.

● Most important, as they are both MITM and your lifeline
● Brand new devices unmaintained and unpatched

– New devices start with 4 year old code!  

● Firmware is usually not updated after ~1 year after sale 
by vendor, after the crash rate diminishes, then rots

● Embedded devices (e.g. your Nest thermostats) are no 
different than routers, except they are not on your path to 
the rest of the world...

● We now depend on our Internet service
– e.g. POTS (wired telephones) are doomed: you'd like basic 

things like your phone to work in an emergency



  

Wake Up Calls

● Research demonstrating single vulnerabilities that 
affect > half of the tested home routers

● DNSchanger attacked home routers as well as hosts
● 4.5 million DSL routers in Brazil
● TheMoon worm: most models of Linksys routers
● Heartbleed...
● It's a matter of when, rather than if, we have a big, big 

problem, if we don't already...

https://en.wikipedia.org/wiki/DNSChanger
http://arstechnica.com/security/2012/10/dsl-modem-hack-infects-millions-with-malware/
http://isc.sans.edu/forums/diary/A+few+updates+on+The+Moon+worm/17855
http://heartbleed.com/


  

Nightmare Scenarios

● The Nightmare on Connected Home Street   is 
amusing but is actually only a minor bad dream

● Here's a real nightmare as likely as Honan's...
– The broadband edge of the Internet stops working one 

day, and cannot be resurrected even by a power cycle

– You have no Internet access at all, and cannot access 
patches for anything

– Devices might even need to be replaced

– I've lived this nightmare. I looked over into the abyss... 
Root cause: binary blob in other non-upgradeable devices.
Whether implant, malware, or bug, it is still a disaster...

http://www.wired.com/2014/06/the-nightmare-on-connected-home-street/


  

Hysterical Causes

● First Linux flash file system elided UID's/GID's
– Everything typically runs as “root”

– Many minor vulnerabilities therefore become major vulnerabilities

– “Simple” matter of configuration to fix this problem, but someone has 
to do the work!

● Flash size has prevented use of “upstream” distro's that have 
ongoing security updates and upgrades
– Would love to have current volume bill of materials data: at some 

date, the tiny flash devices cost more than modern large ones

● Economic disconnect between “costs” and “benefits”
● BOM costs drives boot loader to unprotected flash
● Binary blob disaster



  

Binary Blob Disaster

● Silicon vendors design a board support package for their silicon, to be 
shopped to ODM's to shop for possible “design wins”
– Silicon vendor freezes on a static version of Linux/applications

– Write a device driver, usually a “binary blob”, despite the GPL

– Or the chip/module has a processor, with its own OS/binary blob

– Even if the vendor has not been suborned by an intelligence agency, the 
code for these blobs we've usually seen is poor

● ODM's often ship that code, “with sugar on top”
● No incentive for updates, until the next generation silicon is being 

shopped around again: years later, maybe they do something
● Net result: No update stream and a frozen ecosystem: even if ODM's 

had the expertise and incentive, ODM's cannot update to current 
software to fix vulnerabilities, and 3rd parties cannot maintain it either
– And ODM's have no financial incentive to update, either



  

Disconnect of Incentives: Supplier

● Silicon vendor: incentive for design wins, software is an 
expense and an after-thought
– Vulnerabilities occur much later

● ODM: if it doesn't crash, and doesn't get bad reviews 
while the device is for sale, they are happy:
– Vulnerabilities come later

– They have little software expertise, and what they have goes 
to what they consider market differentiation, since the silicon 
vendors prevent serious updates: race to the bottom 

● Efforts are not pooled between ODM's since the code 
base is too old to integrate into upstream projects

● Updates are left to user installation, if ever published



  

Disconnect of Incentives
Consumers

Depending on market, devices are purchased by either 
ISP's or end-users, who “pay” the support costs
– Installation costs often exceeds the purchase costs 

● ISP's
– Home routers sometimes provided by your ISP

– No competence in security in devices: e.g. BT's “backdoor”. 
ISP's goals differ from their customers

● End users
– It is difficult/impossible for you to buy a “better” device

– They (you) don't know enough to differentiate the devices 
beyond “crash” bugs, so you buy on price alone (Consumer 
Reports for home routers???): race to the bottom



  

Devices need a secure boot loader

● Else you have no place to stand for security
● Users must be able to unlock them!

– due to disaster, support & trust scenarios

● Cost is minimal: between $.00 and $.28 cents
– Depending if the flash has proper locking facilities

– If not, you need one D flop and a separate boot room

● OpenFirmware does all the required crypto, etc; 
no code need be developed



  

Actions Needed (Technical)

● Fork lift upgrade of the entire edge of the 
Internet is the only solution!

● Secure the bootloader (properly); owners/users 
must be able to unlock them at will

● Apply existing technologies to build less 
insecure systems

● Disaster planning
● But it will all be for naught, if we do not re-

engineer our business and software 
engineering practices



  

Business Problem is Really Hard
The Ecosystem Must Change...

● Fundamentally, a tragedy of the commons problem
– How to connect those with the money (e.g. the users and ISP's), 

with those who develop and maintain the code?

– Need funding model for continuing engineering of these devices 
for their lifetime

– Need organizations to share software engineering among 
ODM's (Original Device Manufacturers)

– Avoid monoculture....

● “Proprietary” information: e.g. binary blobs, documentation
● Who do you trust?

– No single solution will suffice, not a vendor, ISP, or otherwise

● Collective actions are necessary



  

Surprising Result

● RMS was right about Tivoization!
– Says me, who helped define the MIT License

● But he had only two of the three real reasons:
– Life

– Liberty

– The Pursuit of Happiness

● Whether this is enforceable by software license 
is orthogonal to the basic principle....



  

Is There Hope?

● Some: 
– Linux Foundation

– Embedian

– OpenWrt

– Other community efforts

● But closed binary driver and firmware blobs and lack of 
documentation limit and fragment the effectiveness of 
these efforts

● Some ISP's are aware that the market serves them very 
poorly...



  

Open source router projects

● The most interesting (by far) is OpenWrt
– Keeps up to date with upstream projects

– Runs on >150 models of home routers

– Used at serious volume and is the “upstream” for 
many of the smaller commercial vendors (e.g. Fon, 
Buffalo, some of the Ubiquity devices, etc).

– Large community is using OpenWrt in interesting 
ways at scale (the European community networking 
groups use OpenWrt as their common basis)

● Approximately 4 years ahead of the commercial 
markets, but badly needs resources applied...



  

Some Policy Questions...

● How do we identify “critical infrastructure”? You can't predict it! 
– Anything that reaches sufficient volume can become critical infrastructure. 

Worse yet: you don't know in advance what will succeed in the market

– The driver or firmware for a chip may be built into many different devices. 
Actual monocultures are often dismayingly widespread

● Code without a community is worthless. 
Must code be “born open”? How to handle organizational change 
over decades? How long must devices see support? Lifetime of 
devices? Should unmaintained devices “suicide”?
– Code escrow is suspect at best...

– How do you know you have the right code? Under what circumstances is it 
released? Will support/maintenance infrastructure be available when 
necessary to fix a critical problem? Will the people or organization even 
exist?

– Devices can easily have lifetimes longer than most human organizations



  

More Policy Questions...

● Mono-cultures are dangerous
– Linux, many other software packages...

– How do we encourage alternatives to Linux? 
Again, binary blobs & lack of documentation make 
achieving critical mass in alternatives (e.g. *BSD) to 
Linux very difficult

● “After market” upgrades
– Should “Proprietary” information be able to inhibit 

other players moving into a market with upgrades, 
both hardware and software?  



  

More Policy Questions...

● How do we solve the tragedy of the commons 
problem? Who pays for development & support? 
How and why do people/organizations pay? You 
have to feed the penguins....
– Critical infrastructure is any software widely enough 

used: e.g. OpenSSL/Heartbleed, but many more

– Can be even a device driver or firmware for a device

● What role should industry and government have 
in pushing the market in a safer direction?



  

“Friends don't let friends run factory firmware”

A Meme to Spread



  

Questions?



  

What can you do?

● Install OpenWrt/CeroWrt today and come help
– Gets you mesh networking, IPv6, Bufferbloat fixes, 

etc...

– CeroWrt routes, rather than bridges the networks

● Build in basic firmware security in your devices: 
cost is between 26 cents and zero cents, when 
you build hardware



  

CeroWrt: an advanced, bleeding 
edge build of OpenWrt

● Linux 3.10.44 kernel (currently)
● Platform for bufferbloat work: fq_codel, etc.
● Routes, rather than bridges the network devices
● Entropy!!! (at least > 0...)
● Mesh networking (Babel & others available in 

Quagga)
● IPv6 support, source sensitive routing (multiple 

upstream nets)
● Current dnsmasq w. DNSSec support
● Network test tools



  

Come help!

● The network you secure may be your own
● OpenWrt has a user base of scale millions to 

convert to your ideas 
● Your work may enter the mainstream market
● We have lots of security technology: but what 

should we actually apply here?
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