

Embedded Systems Security

Jim Gettys
June 24, 2014

Pointers

● The Internet of Things is Wildly Insecure...
Bruce Schneier, Wired, January 2014

● Overtaken
Dan Geer, Lawfare Blog, May, 2014

● The Nightmare on Connected Home Street
Matt Honan, Wired, June 2014

● TAO Catalog
NSA Ant Division, 2008, Published December 30, 2013

● Familiarity Breeds Contempt: ...
Sandy Clark, Stefan Frei, Matt Blaze, Jonathan Smith, ACSAC '10

http://www.wired.com/2014/01/theres-no-good-way-to-patch-the-internet-of-things-and-thats-a-huge-problem/
http://geer.tinho.net/geer.lawfare.15iv14.txt
http://www.wired.com/2014/06/the-nightmare-on-connected-home-street/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://www.acsac.org/2010/openconf/modules/request.php?module=oc_program&action=view.php&a=&id=69&type=2

Software Lifecycle

● We are used to throwing computers away
– Your phone, laptop, desktops, etc.

– We've learned through great pain that we must keep them updated

● But we now build long lived devices and systems with
computers inside, that are Internet connected
– Your thermostats, home theater, home router, home theater, security

cameras, light bulbs, etc. Soon car, refrigerators, coffee makers...

– Installation costs often greatly exceed cost of the computer

● Some devices have potential lifetimes measured in decades
– Timescales are long relative to human organizations

– We've presumed we can “forget about them”

– Is this safe? NO! The SCADA problem writ large

https://en.wikipedia.org/wiki/SCADA#Security_issues

Familiarity Breeds Contempt:
The Honeymoon Effect and the Role of Legacy

Code in Zero-day Vulnerabilities
By Sandy Clark, Stefan Frei, Matt Blaze, Jonathan Smith,
ACSAC '10

Figure 1

Device Lifetime is a Cruel Master
Honeymoon effect take-away

● You cannot leave software and devices “unmaintained”: continuous
update is essential, for the life of the device

● Products (at least complex ones) MUST have SECURE update
stream for the life of the device! (Remember Windows XP!)
– You must select components that CAN be maintained

– You must select products that CAN be maintained

● The owner must have ultimate control! You must have ultimate power
when the device/network/system fails.....
– How long will a device remain in the ecosystem? Your router? Your

thermostat? Your light bulbs? Your car? Your heating system?

● Who do you trust to provide updates? Today? Tomorrow? In 10 years?
– Long term, only community maintenance might possibly succeed

– Binary blobs leave you helpless and vulnerable, forever

Home Routers, Modems, etc.

● Most important, as they are both MITM and your lifeline
● Brand new devices unmaintained and unpatched

– New devices start with 4 year old code!

● Firmware is usually not updated after ~1 year after sale
by vendor, after the crash rate diminishes, then rots

● Embedded devices (e.g. your Nest thermostats) are no
different than routers, except they are not on your path to
the rest of the world...

● We now depend on our Internet service
– e.g. POTS (wired telephones) are doomed: you'd like basic

things like your phone to work in an emergency

Wake Up Calls

● Research demonstrating single vulnerabilities that
affect > half of the tested home routers

● DNSchanger attacked home routers as well as hosts
● 4.5 million DSL routers in Brazil
● TheMoon worm: most models of Linksys routers
● Heartbleed...
● It's a matter of when, rather than if, we have a big, big

problem, if we don't already...

https://en.wikipedia.org/wiki/DNSChanger
http://arstechnica.com/security/2012/10/dsl-modem-hack-infects-millions-with-malware/
http://isc.sans.edu/forums/diary/A+few+updates+on+The+Moon+worm/17855
http://heartbleed.com/

Nightmare Scenarios

● The Nightmare on Connected Home Street is
amusing but is actually only a minor bad dream

● Here's a real nightmare as likely as Honan's...
– The broadband edge of the Internet stops working one

day, and cannot be resurrected even by a power cycle

– You have no Internet access at all, and cannot access
patches for anything

– Devices might even need to be replaced

– I've lived this nightmare. I looked over into the abyss...
Root cause: binary blob in other non-upgradeable devices.
Whether implant, malware, or bug, it is still a disaster...

http://www.wired.com/2014/06/the-nightmare-on-connected-home-street/

Hysterical Causes

● First Linux flash file system elided UID's/GID's
– Everything typically runs as “root”

– Many minor vulnerabilities therefore become major vulnerabilities

– “Simple” matter of configuration to fix this problem, but someone has
to do the work!

● Flash size has prevented use of “upstream” distro's that have
ongoing security updates and upgrades
– Would love to have current volume bill of materials data: at some

date, the tiny flash devices cost more than modern large ones

● Economic disconnect between “costs” and “benefits”
● BOM costs drives boot loader to unprotected flash
● Binary blob disaster

Binary Blob Disaster

● Silicon vendors design a board support package for their silicon, to be
shopped to ODM's to shop for possible “design wins”
– Silicon vendor freezes on a static version of Linux/applications

– Write a device driver, usually a “binary blob”, despite the GPL

– Or the chip/module has a processor, with its own OS/binary blob

– Even if the vendor has not been suborned by an intelligence agency, the
code for these blobs we've usually seen is poor

● ODM's often ship that code, “with sugar on top”
● No incentive for updates, until the next generation silicon is being

shopped around again: years later, maybe they do something
● Net result: No update stream and a frozen ecosystem: even if ODM's

had the expertise and incentive, ODM's cannot update to current
software to fix vulnerabilities, and 3rd parties cannot maintain it either
– And ODM's have no financial incentive to update, either

Disconnect of Incentives: Supplier

● Silicon vendor: incentive for design wins, software is an
expense and an after-thought
– Vulnerabilities occur much later

● ODM: if it doesn't crash, and doesn't get bad reviews
while the device is for sale, they are happy:
– Vulnerabilities come later

– They have little software expertise, and what they have goes
to what they consider market differentiation, since the silicon
vendors prevent serious updates: race to the bottom

● Efforts are not pooled between ODM's since the code
base is too old to integrate into upstream projects

● Updates are left to user installation, if ever published

Disconnect of Incentives
Consumers

Depending on market, devices are purchased by either
ISP's or end-users, who “pay” the support costs
– Installation costs often exceeds the purchase costs

● ISP's
– Home routers sometimes provided by your ISP

– No competence in security in devices: e.g. BT's “backdoor”.
ISP's goals differ from their customers

● End users
– It is difficult/impossible for you to buy a “better” device

– They (you) don't know enough to differentiate the devices
beyond “crash” bugs, so you buy on price alone (Consumer
Reports for home routers???): race to the bottom

Devices need a secure boot loader

● Else you have no place to stand for security
● Users must be able to unlock them!

– due to disaster, support & trust scenarios

● Cost is minimal: between $.00 and $.28 cents
– Depending if the flash has proper locking facilities

– If not, you need one D flop and a separate boot room

● OpenFirmware does all the required crypto, etc;
no code need be developed

Actions Needed (Technical)

● Fork lift upgrade of the entire edge of the
Internet is the only solution!

● Secure the bootloader (properly); owners/users
must be able to unlock them at will

● Apply existing technologies to build less
insecure systems

● Disaster planning
● But it will all be for naught, if we do not re-

engineer our business and software
engineering practices

Business Problem is Really Hard
The Ecosystem Must Change...

● Fundamentally, a tragedy of the commons problem
– How to connect those with the money (e.g. the users and ISP's),

with those who develop and maintain the code?

– Need funding model for continuing engineering of these devices
for their lifetime

– Need organizations to share software engineering among
ODM's (Original Device Manufacturers)

– Avoid monoculture....

● “Proprietary” information: e.g. binary blobs, documentation
● Who do you trust?

– No single solution will suffice, not a vendor, ISP, or otherwise

● Collective actions are necessary

Surprising Result

● RMS was right about Tivoization!
– Says me, who helped define the MIT License

● But he had only two of the three real reasons:
– Life

– Liberty

– The Pursuit of Happiness

● Whether this is enforceable by software license
is orthogonal to the basic principle....

Is There Hope?

● Some:
– Linux Foundation

– Embedian

– OpenWrt

– Other community efforts

● But closed binary driver and firmware blobs and lack of
documentation limit and fragment the effectiveness of
these efforts

● Some ISP's are aware that the market serves them very
poorly...

Open source router projects

● The most interesting (by far) is OpenWrt
– Keeps up to date with upstream projects

– Runs on >150 models of home routers

– Used at serious volume and is the “upstream” for
many of the smaller commercial vendors (e.g. Fon,
Buffalo, some of the Ubiquity devices, etc).

– Large community is using OpenWrt in interesting
ways at scale (the European community networking
groups use OpenWrt as their common basis)

● Approximately 4 years ahead of the commercial
markets, but badly needs resources applied...

Some Policy Questions...

● How do we identify “critical infrastructure”? You can't predict it!
– Anything that reaches sufficient volume can become critical infrastructure.

Worse yet: you don't know in advance what will succeed in the market

– The driver or firmware for a chip may be built into many different devices.
Actual monocultures are often dismayingly widespread

● Code without a community is worthless.
Must code be “born open”? How to handle organizational change
over decades? How long must devices see support? Lifetime of
devices? Should unmaintained devices “suicide”?
– Code escrow is suspect at best...

– How do you know you have the right code? Under what circumstances is it
released? Will support/maintenance infrastructure be available when
necessary to fix a critical problem? Will the people or organization even
exist?

– Devices can easily have lifetimes longer than most human organizations

More Policy Questions...

● Mono-cultures are dangerous
– Linux, many other software packages...

– How do we encourage alternatives to Linux?
Again, binary blobs & lack of documentation make
achieving critical mass in alternatives (e.g. *BSD) to
Linux very difficult

● “After market” upgrades
– Should “Proprietary” information be able to inhibit

other players moving into a market with upgrades,
both hardware and software?

More Policy Questions...

● How do we solve the tragedy of the commons
problem? Who pays for development & support?
How and why do people/organizations pay? You
have to feed the penguins....
– Critical infrastructure is any software widely enough

used: e.g. OpenSSL/Heartbleed, but many more

– Can be even a device driver or firmware for a device

● What role should industry and government have
in pushing the market in a safer direction?

“Friends don't let friends run factory firmware”

A Meme to Spread

Questions?

What can you do?

● Install OpenWrt/CeroWrt today and come help
– Gets you mesh networking, IPv6, Bufferbloat fixes,

etc...

– CeroWrt routes, rather than bridges the networks

● Build in basic firmware security in your devices:
cost is between 26 cents and zero cents, when
you build hardware

CeroWrt: an advanced, bleeding
edge build of OpenWrt

● Linux 3.10.44 kernel (currently)
● Platform for bufferbloat work: fq_codel, etc.
● Routes, rather than bridges the network devices
● Entropy!!! (at least > 0...)
● Mesh networking (Babel & others available in

Quagga)
● IPv6 support, source sensitive routing (multiple

upstream nets)
● Current dnsmasq w. DNSSec support
● Network test tools

Come help!

● The network you secure may be your own
● OpenWrt has a user base of scale millions to

convert to your ideas
● Your work may enter the mainstream market
● We have lots of security technology: but what

should we actually apply here?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

