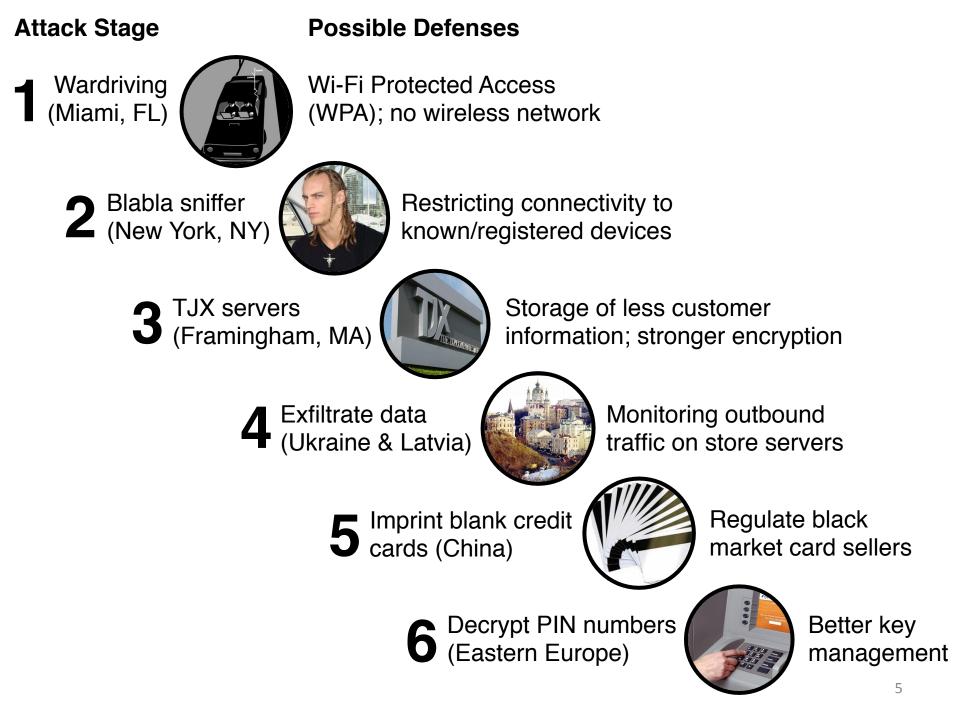
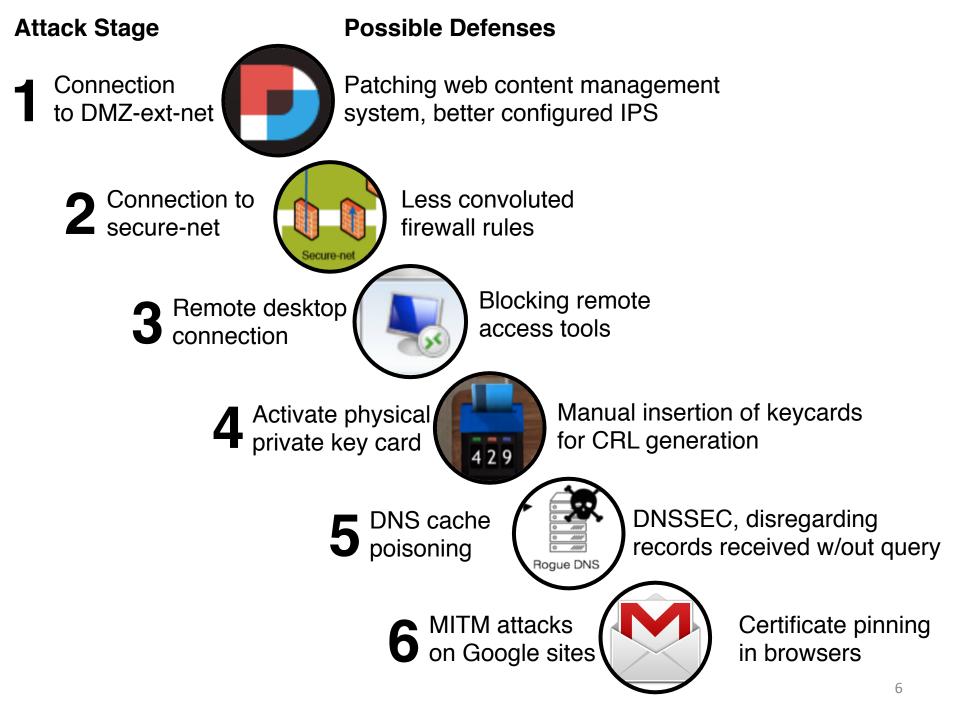

Classes of Defense for Computer Systems

Josephine Wolff April 21, 2015 Berkman Center for Internet & Society

Why Information Security is Hard— An Economic Perspective (Anderson, 2001)

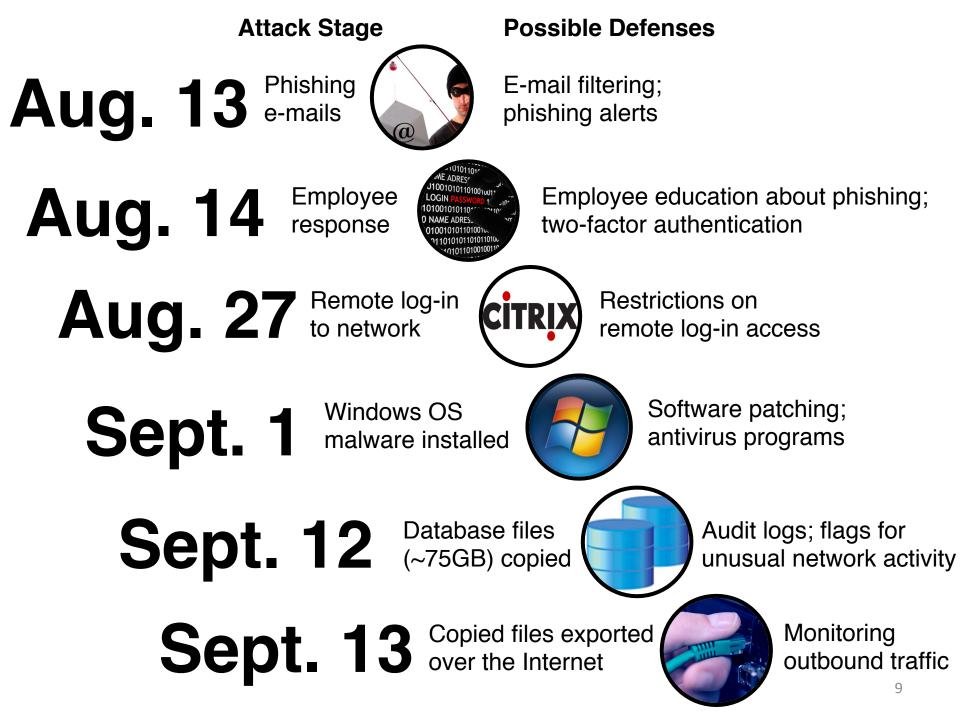
"Attack is simply easier than defense. Defending a modern information system could also be likened to defending a large, thinly-populated territory like the nineteenth century Wild West: the men in black hats can strike anywhere, while the men in white hats have to defend everywhere."


Cyber Attack Kill Chain Model (Hutchins et al., 2011)



"the adversary must progress successfully through each stage of the chain before it can achieve its desired objective; just one mitigation disrupts the chain and the adversary ... the defender can achieve an advantage over the aggressor"

Attack Stage



Two Ways of Looking at Defense

- Defense to limit access/computer system capabilities
 - Access to computer systems is not a binary "in" or "out" but rather a range of capabilities
 - Each time a bad actor acquires a new, useful capability is a potential opportunity for defense
- Defense to limit harm/damage
 - The closer malicious actors comes to actually harming their victims the easier it becomes to identify their behavior as decisively illegitimate
 - Much of this indisputably harmful behavior occurs outside the context of the protected computer system, offering additional opportunities for defense

Why access defense is hard

- Difficult to distinguish between malicious and legitimate activity early on in many types of attacks
- Access stages of attacks are more likely to be highly replaceable for adversaries
 - Resonates with the "weakest link" theory of defense

How should we think about classes of attacks?

- Early access modes, prior to the infliction of harm, are the stages of an attack or intrusion that are likely to be most replaceable for the adversary
 - Defending against the acquisition of initial capabilities may help narrow that adversary's options, but is unlikely to provide protection against the class of harm that adversary intends to inflict
- Classes of harm are more static than the classes of exploitable technical capabilities—the former set is relatively contained and unchanging, the latter much larger and in constant flux

Classes of harm

- Financial theft/fraud
- Physical service disruption
 - Incidents that require going beyond a computer system to inflict damage offer additional opportunities for defensive intervention
- Digital service disruption
- Political/military espionage
 - Incidents whose scope is solely digital rely heavily on access defense and are constrained in some ways as to how devastating their impact can actually be on people
- Economic espionage

What can application designers do?

- Make it easier to distinguish legitimate and malicious behavior through the design of applications
 - Establishing enduring reputation markers for identity indicators based on previous behavior
 - Using behavioral indicators to enforce the accuracy of identity indicators
 - Checking the consistency of behavioral and identity indicators

What can organizations and managers do?

- Understand the threats they face and the ultimate harms that can result to both themselves and others
 - Define what constitutes legitimate and malicious behavior in particular environments
- Implement independent lines of defense
 - Focus resources on harms and essential (rather than replaceable) threat capabilities (e.g., data exfiltration)

about

visiting | maps | offices | history

admissions

undergrad | graduate | financial aid

education

schools+courses OpenCourseWare | MITx | edX

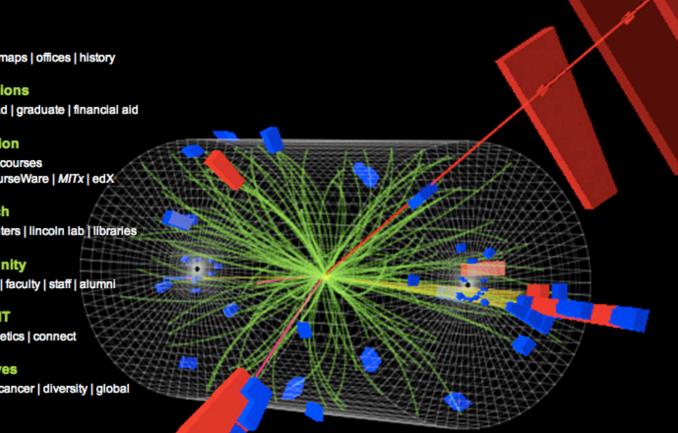
research

labs+centers | lincoln lab | libraries

community

students | faculty | staff | alumni

life@MIT


arts | athletics | connect

initiatives

energy | cancer | diversity | global

impact industry | public service

commencement

today's spotlight "An enormous breakthrough" Fresh evidence suggests that a particle discovered in 2012 is the Higgs boson

💿 MIT Google 🔵 People 🔵 Offices

Search

news

Rett syndrome drug shows promise in clinical trial

Experimental 36-core chip employs innovative communication scheme

Graduate student Kaitlin Goldstein dies in India

Robert Langer receives Kyoto Prize

research campus press

events

Campus Tours and Info Sessions

9 Artists: MIT List Visual Arts Center

The Good Jobs Strategy: Why Good Jobs Are Good for Businesses (June 26)

Today's image

#JusticeForAaronSwartz #freemanning #OpFreeAssange #Antisec

In Memoriam, Aaron Swartz, November 8, 1986 – January 11, 2013, Requiescat in pace.

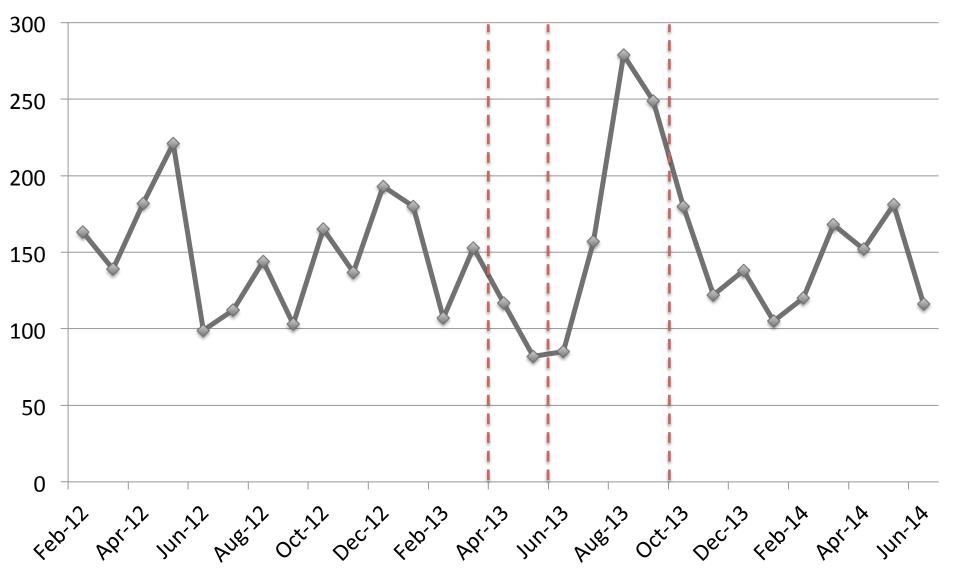
A brief message from Anonymous.

Whether or not the government contributed to his suicide, the government's prosecution of Swartz was a grotesque miscarriage of justice, a distorted and perverse shadow of the justice that Aaron died fighting for — freeing the publicly-funded scientific literature from a publishing system that makes it inaccessible to most of those who paid for it — enabling the collective betterment of the world through the facilitation of sharing — an ideal that we should all support.

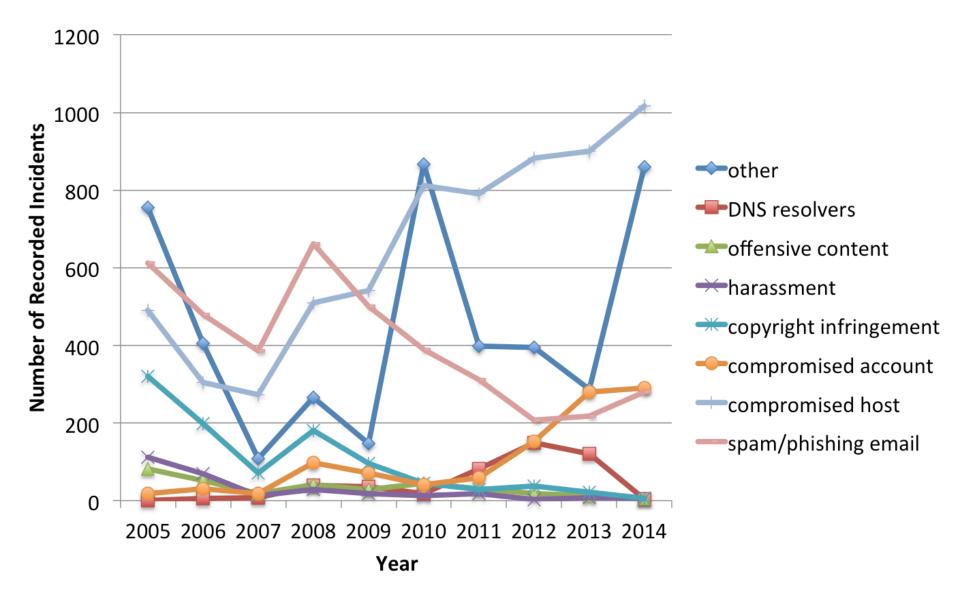
Moreover, the situation Aaron found himself in highlights the injustice of U.S. computer crime laws, particularly their punishment regimes, and the highly-questionable justice of pre-trial bargaining. Aaron's act was undoubtedly political activism; it had tragic consequences.

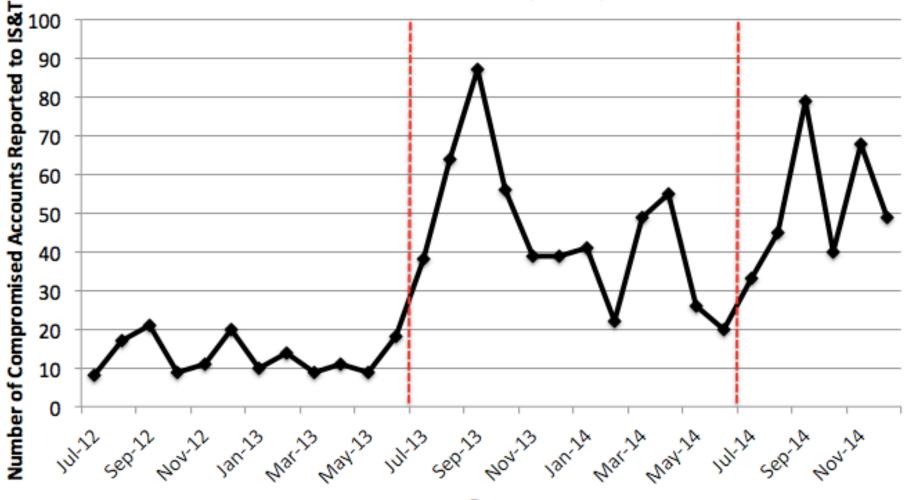
Our wishes

- We call for this tragedy to be a basis for reform of computer crime laws, and the overzealous prosecutors who use them
- We call for this tragedy to be a basis for reform of copyright and intellectual property law, returning it to the proper principles of common good to the many, rather than private gain to the few.
- We call for this tragedy to be a basis for greater recognition of the oppression and injustices heaped daily by certain persons and institutions of authority upon anyone who dares to stand up and be counted for their beliefs, and for greater solidarity and mutual aid in response.
- We call for this tragedy to be a basis for a renewed and unwavering commitment to a free and unfettered internet, spared from censorship with equality of access and franchise for all.


For in the end, we will not be judged according to what we give, but according to what we keep to ourselves

Aaron, we will sorely miss your friendship, and your help in building a better world. May you read in peace.


New Security Policies (April 2013)


- Firewall
- Password complexity requirements
- Password expiration limit
- Restrictions on off-campus access to MIT administrative applications and servers
- Additional resiliency measures for MIT's primary website

Security Incidents Per Month

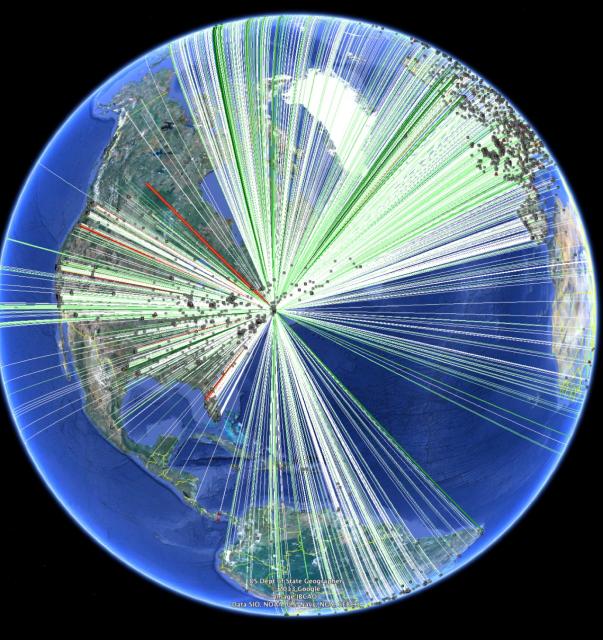
Threat Landscape

Number of Compromised Accounts Before & After Implementation of New Password Policy in July 2013

Date

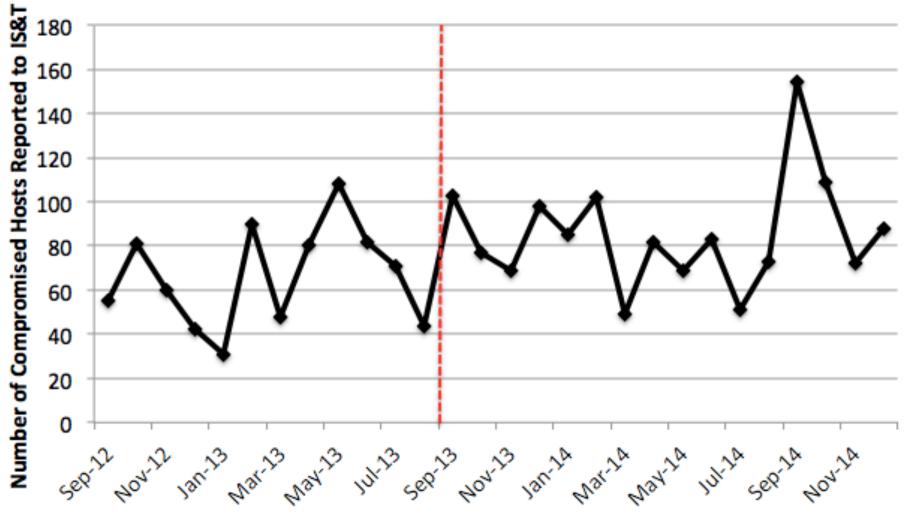
From: MIT Administrator <<u>info@mit.edu</u>> Date: 2014-06-14 15:45 GMT-04:00 Subject: MIT Update Email Account To:

This Email is from MIT Technical team to inform you that all Staff in possesion of the MIT University Email account is currently been affected by a deadly virus which automatically activates your message compose setting and automatically send virus messages to other email users hereby causing harm to the hard drive of your computer and in few days will crash your inbox.


Login into your account to automatically enroll your email into the ongoing Anti-virus cleanser update, just by login into your account your email account shall be updated with our newest Antivirus software, which will protect your email account against any further spam or virus contained email sent to you.

Update E-mail Antivirus - Email Maintenance

http://unionlineaccessonlinemitlivenow.yolasite.com/


120,000 Devices on MITnet/year

80 Security Contacts/ week 35,000 Probes/ host/day 2 Million Password Crack Attempts/day

600 © DMCA T a k e d o w n Notices/month ~400 Malware Infections/ week

Number of Compromised Hosts Reported to IS&T, September 2012-December2014

Date

What can policy-makers do?

- Harm defense, cut off criminal money flows
 - Law enforcement focus on fraud activity
 - Deter Cyber Theft Act
- Incentive/externality problem
 - Hold intermediaries responsible for attacks on third parties or mandate security requirements
- Visibility & measurement problem
 - Collect data on security incidents and associated defensive postures to determine which mitigation measures are effective

Some final thoughts

- Do we over-emphasize access defense and role of individual organizations as defenders?
- To what extent are the externality and incentive issues in security compounded by limited visibility and information?
- To what extent can we reframe problems of computer security—and defense—to be less about computers?

Funding Acknowledgments

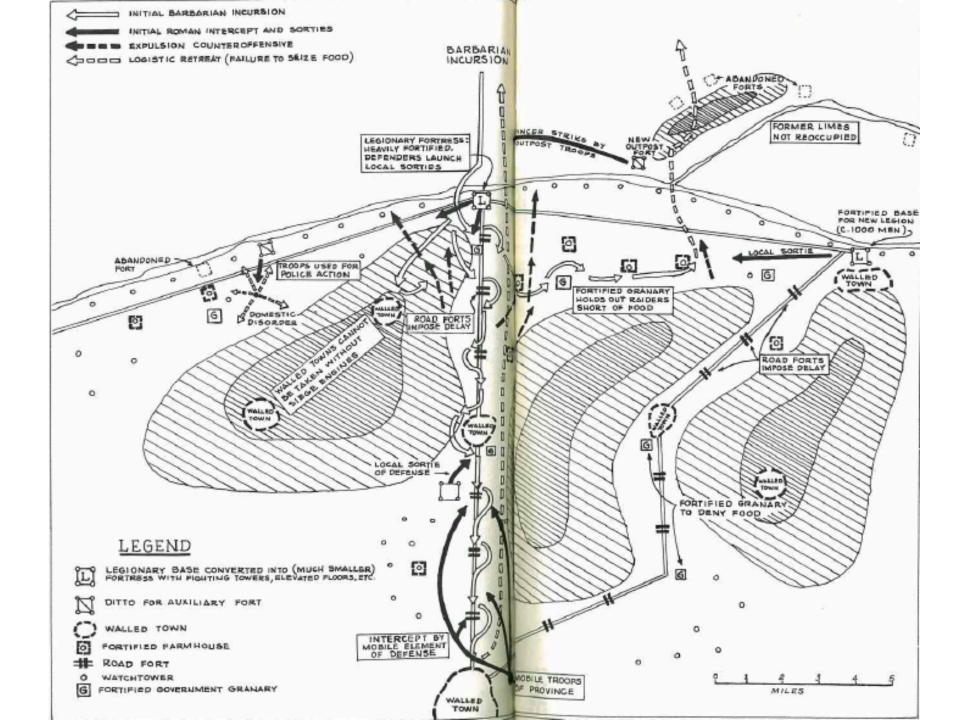
This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1000135412. Additional support is provided by the Office of Naval Research under award number N00014-09-1-0597 as well as a grant from the Northrop Grumman Cybersecurity Research Consortium.

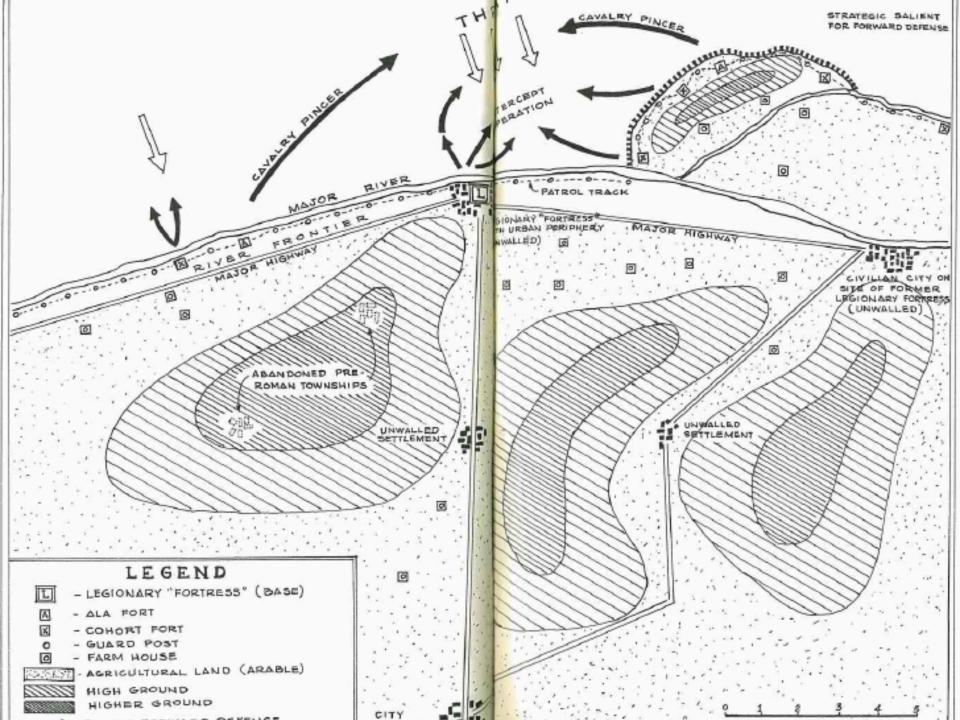
Questions & Discussion

Purpose	Examples	What is reported?	When is it reported?	To whom?
Consumer protection	Data breach notification laws (e.g., California SB 1386)	Who was affected, what information was revealed	Shortly after a breach is detected	Affected parties (i.e., consumers)

Reporting

	Purpose	Examples	What is reported?	When is it reported?	To whom?
	Consumer protection	Data breach notification laws (e.g., California SB 1386)	Who was affected, what information was revealed	Shortly after a breach is detected	Affected parties (i.e., consumers)
Reporting	Real-time threat mitigation	Information sharing policies (e.g., CISA, CISPA)	Signature/ detection information, countermea sures	Immediately	Other parties poised to mitigate the threat


		Purpose	Examples	What is reported?	When is it reported?	To whom?
Reporting	Consumer protection	Data breach notification laws (e.g., California SB 1386)	Who was affected, what information was revealed	Shortly after a breach is detected	Affected parties (i.e., consumers)	
	Real-time threat mitigation	Information sharing policies (e.g., CISA, CISPA)	Signature/ detection information, countermea sures	Immediately	Other parties poised to mitigate the threat	
	Threat trends, root causes, & defense impact	Data collection efforts (e.g., Verizon DBIR)	Why threat succeeded, defenses in place, what might have helped	Following a (potentially lengthy) internal investigation	A party able to aggregate incidents reported by others 30	


Narrowing of options

- As bad actors get closer to achieving their end goals, their behavior is likely to become more unambiguously malicious and the available options for how to achieve those malicious ends are likely to narrow
 - Access itself is rarely an attacker's end goal, so it is unlikely to matter to them whether that initial access occurs at the operating system and application level, or the network level, or even physically
 - These different access pathways are interchangeable, making it necessary to defend against a much wider array of different actions than is needed later on, when the intruders close in on their specific, ultimate goals, leaving them fewer alternative paths

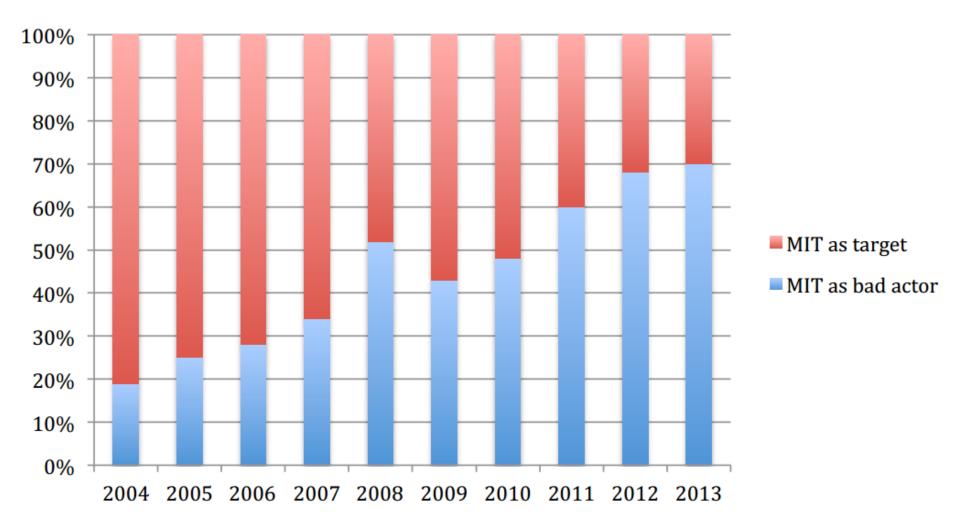
Identifying malicious activity

- Defense gets easier as attackers get closer to their end goals because, generally, we identify malicious activity by associating it with a particular type of inflicted (or intended) harm
 - So the closer someone comes to actually inflicting harm, the easier it is to identify his behavior as malicious and try to put a stop to it
 - Similarly, the further away they are from having the necessary capabilities and tools to inflict harm, the harder it is to make that distinction

Defence in Depth in Nuclear Safety

INSAG-10

A REPORT BY THE INTERNATIONAL NUCLEAR SAFETY ADVISORY GROUP



INSAG-10

TABLE I. LEVELS OF DEFENCE IN DEPTH

Levels of defence in depth	Objective	Essential means	
Level 1	Prevention of abnormal operation and failures	Conservative design and high quality in construction and operation	
Level 2	Control of abnormal operation and detection of failures	Control, limiting and protection systems and other surveillance features	
Level 3	Control of accidents within the design basis	Engineered safety features and accident procedures	
Level 4	Control of severe plant conditions, including prevention of accident progression and mitigation of the consequences of severe accidents	Complementary measures and accident management	
Level 5	Mitigation of radiological consequences of significant releases of radioactive materials	Off-site emergency response	

MIT as Target vs. Bad Actor

	Software industry	Hardware industry	Service providers	Content providers	Payment processors	DNS operators	Web hosts	End users
Actions								
Outcomes								
Reporting								

	Software industry	Hardware industry	Service providers	Content providers	Payment processors	DNS operators	Web hosts	End users
Actions	Code review/ testing process	Testing or audit require ments	Inspect and drop malicious traffic	Review or notice and takedown process	Flag fraud to look for patterns	DNSSEC deployme nt		Patch systems
Outcomes	Fewer errors/ exploits, rapid patching	Reduce counterfeit hardware	Reduce bots, clean infected machines	Rapid removal of abusive content	Reduce fraudulent payments	•	Rapid removal of abusive content	Avoid being part of DDoS attacks
Reporting	Bugs, exploits, exploit signature	Flaws, exploits s	Bots, DoS attacks, malicious traffic signatures	content incidents, signatures		DoS, corruption incidents	Abusive sites, modes of payment	Infection vector

Future Work

- Empirical analysis of the impact of new security measures (particularly combinations of security measures)
- Effect of cybersecurity policies and regulations on incidence and cost of cybercrime
- Characterizing defense independence scale for issuers of cyberinsurance

Identity indicators

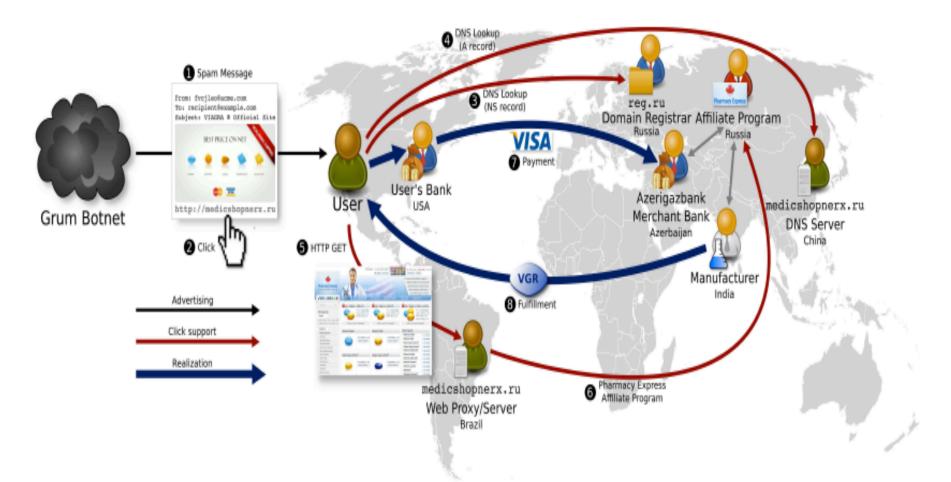
Identity indicator	Barrier created for intruders	Vulnerabilities of the indicator	Work required to exploit vulnerabilities
Code signature	Cannot reuse known malware to infect new computers	Unable to detect new malware until it has been exploited/used	Programming new malware that does not use older code signatures
Domain	Cannot reuse known domains for phishing/malicious communications	Unable to detect new domains before they are set up and used in a malicious manner	Purchasing and setting up new domains
Certificate	Cannot reuse known fraudulent certificates	Unable to detect new fraudulent certificates	Purchasing/ acquiring new certificate
Authentication credential (e.g. password, one- time code, biometric)	Cannot access capabilities without figuring out or stealing credentials	Credentials may be stolen, imitated, or guessed by bad actors to exploit protected capabilities	Stealing, imitating, or guessing the required credentials

Behavioral indicators

Behavioral indicator	Barrier created for intruders	Vulnerabilities of the indicator	Work required to exploit vulnerabilities
Sending executable files as attachments	More difficult to transmit malware via email	Other interfaces for transmitting malware, recognizing file type	Disguising executable files as other types, identifying alternative pathway
Repeated, regularly scheduled contact with unknown servers	More difficult to maintain regularly scheduled communication with compromised systems	Relies on communication with malicious servers happening at routine intervals and consistent addresses	Disguising or changing communicating servers and varying the timing of communication with compromised systems
Unusually large volume of standard activity (e.g., queries, login attempts, exfiltrated data)	Harder to execute capabilities in large volume (large-scale denial-of-service, dictionary attacks, or espionage)	Requires setting some limit under which malicious activity may not be detected, allowing attackers to operate just below that limit	Figuring out the volume limitations and then just meeting, but not exceeding, them
Standard activity originating from or going to unusual source/ destination	Attackers must take time to establish some familiarity of their tools/resources with target	Source and destination identifiers may be forged or manipulated to appear familiar	Disguising or introducing source/ destination identifiers to targets gradually so they are considered trusted

Research questions

- How do we define defense-in-depth in the context of computer systems?
- What classes of defense can we identify and how can they be combined to build design patterns for computer systems?
- What are the implications of these classes for different actors in the security ecosystem and their defensive responsibilities and investments?

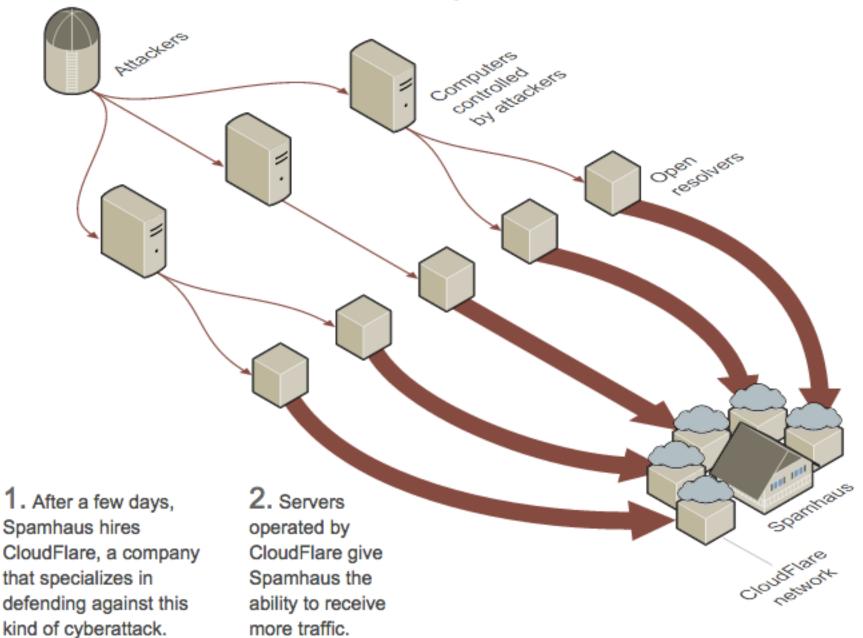

Defining defense-in-depth for computer systems

- Defense-in-depth is the combination of security mechanisms that are both independent and overlapping
 - a single attack would be unlikely to compromise all of the security mechanisms simultaneously
 - all of the security mechanisms must be compromised for an attack to be successfully carried out

Degrees of Independence

- No two mechanisms can ever be completely independent; their degree of independence is defined by their common sphere of dependence (e.g., an operating system, a person, a network, a company, etc.) and how difficult that sphere is to compromise
 - The larger the sphere (i.e., that more difficult it is to compromise), the more independent the defenses

Spam Click Value Chain Analysis (Levchenko et al., 2011)


Identifier	Class
FAU	Security Audit
FCO	Communication
FCS	Cryptographic Support
FDP	User Data Protection
FIA	Identification and Authentication
FMT	Security Management
FPR	Privacy
FPT	Protection of Security Functionality
FRU	Resource Utilization
FTA	Access
FTP	Trusted Path/Channels

ISO/IEC 15408: Common Criteria for Information Technology Security Evaluation

Essential capabilities for digital harm

- Two classes of incidents that are largely dependent on access defenses—denial-ofservice attacks and espionage—suggest two types of behavioral indicators that may be valuable for distinguishing between malicious and legitimate activity:
 - Volume
 - Data exfiltration
- Mitigation may involve inserting new intermediate steps and monitoring third parties

The Response

Function Unique Identifier	Function	Category Unique Identifier	Category	
		AM	Asset Management	
		BE	Business Environment	
ID	Identify	Identify GV Governance		
		RA	Risk Assessment	
		RM	Risk Management	
		AC	Access Control	
		AT	Awareness and Training	
PR	Protect	DS	Data Security	
		IP	Information Protection Processes and Procedures	
			Protective Technology	
	Detect	AE	Anomalies and Events	
DE	Detect	СМ	Security Continuous Monitoring	
		DP	Detection Processes	
		СО	Communications	
RS	Respond	AN	Analysis	
		MI	Mitigation	
		IM	Improvements	
		RP	Recovery Planning	
RC	Recover	IM	Improvements	
		СО	Communications	

NIST Cybersecurity Framework

Defense-in-depth

- We need to know how different defenses fit together because we know that we can't rely on just one
- This leads to the notion of "defense-indepth" or assembling multiple defenses with orthogonal vulnerabilities

Classes of defense

- We use a variety of different tools and mechanisms to defend computer systems against abuse or attacks:
 - Encryption
 - Firewalls
 - Certificates
 - Anti-virus programs
 - Password complexity requirements
 - Multi-factor authentication

How do these defenses fit together?

- There is considerable work on each of these individual areas of defense, but very little that helps defenders understand:
 - How they relate to each other, or how each individual defense augments the others and fits into a broader strategy
 - What a group of security mechanisms does (and does not) defend against in aggregate

Information Assurance Through DEFENISE IN DEPTH

February 2000

THE BUSINESS VALUE OF TECHNOLOG

FEB. 22, 201

Strategy

If you think walls will keep your treasured data secure, you're living in a fairy tale p.29 By Michael A. Davis

Information Assurance Through Defense-in-Depth (2000)

- Defense-in-depth is:
 - increasing and strengthening defensive barriers as well as providing targets with the means to fight back actively;
 - when multiple different types of defensive mechanisms are deployed in concert (people, operations, technology);
 - when multiple different elements of computer systems are protected (enclaves, enclave boundaries, networks linking enclaves, and supporting infrastructures);
 - when every means of attacking a computer system is protected against;
 - when several defenses are arranged to be encountered sequentially so that an attacker must overcome all of them in order to be successful;
 - when the vulnerabilities of each defense are reinforced by other defenses with different vulnerabilities that cannot be exploited in the same manner.


Defense in Depth

Network Perimeter

Physical Security

Control Network (by Zone)

Device Security (e.g. AV or CIFS monitoring) Control System/ Critical Asset

10 essential practices cyber security defense in depth

Phase	Detect	Deny	Disrupt	Degrade	Deceive	Contain
Reconnaissance	Web Analytics	Firewall ACL				Firewall ACL
Weaponization	NIDS	NIPS				NIPS
Delivery	Vigilant User	Proxy Filter	Inline AV	Queuing		App-Aware Firewall
Exploitation	HIDS	Patch	DEP			Inter-Zone NIPS
Installation	HIDS	<i>'chroot'</i> Jail	AV			EPP
Command & Control	NIDS	Firewall ACL	NIPS	Tarpit	DNS Redirect	Trust Zones
Actions on Targets	Audit Logs	Outbound ACL	DLP	Quality of Service	Honeypot	Trust Zones

Defense in Depth Focus Areas

Defend the Network & Infrastructure Defend the Enclave Boundary Defend the Computing Environment Supporting Infrastructures KMI/PKI Detect & Respond

What classes of defense do we use?

Identifier	Family	Class
AC	Access Control	Technical
AT	Awareness and Training	Operational
AU	Audit and Accountability	Technical
CA	Security Assessment and Authorization	Management
CM	Configuration Management	Operational
CP	Contingency Planning	Operational
IA	Identification and Authentication	Technical
IR	Incident Response	Operational
MA	Maintenance Operational	
MP	Media Protection Operational	
PE	Physical and Environmental Protection Operational	
PL	Planning	Management
PS	Personnel Security	Operational
RA	Risk Assessment	Management
SA	System and Services Acquisition	Management
SC	System and Communications Protection	Technical
SI	System and Information Integrity	Operational
PM	Program Management	Management

NIST 800-53, Security and Privacy Controls for Federal Information Systems and Organizations

Inventory of Authorized and Unauthorized Devices

Inventory of Authorized and Unauthorized Software

Secure Configurations for Hardware and Software on Mobile Devices, Laptops, Workstations, and Servers

Continuous Vulnerability Assessment and Remediation

Malware Defenses

Application Software Security

Wireless Device Control

Data Recovery Capability

Security Skills Assessment and Appropriate Training to Fill Gaps

Secure Configurations for Network Devices such as Firewalls, Routers, and Switches

Limitation and Control of Network Ports, Protocols, and Services

Controlled Use of Administrative Privileges

Boundary Defense

Maintenance, Monitoring, and Analysis of Security Audit Logs

Controlled Access Based on the Need to Know

Account Monitoring and Control

Data Loss Prevention

Incident Response Capability

Secure Network Engineering

Penetration Tests and Red Team Exercises

Twenty Critical Controls for Effective Cyber Defense

Critical Security Control	Corresponding NIST 800-53 Controls
Inventory of Authorized and Unauthorized Devices	CM-8 (a, c, d, 2, 3, 4), PM-5, PM-6
Inventory of Authorized and Unauthorized Software	CM-1, CM-2 (2, 4, 5), CM-3, CM-5 (2, 7), CM-7 (1, 2), CM-8 (1, 2, 3, 4, 6), CM-9, PM-6, SA-6, SA-7
Secure Configurations for Hardware and Software on Mobile Devices, Laptops, Workstations, and Servers	CM-1, CM-2 (1, 2), CM-3 (b, c, d, e, 2, 3), CM-5 (2), CM-6 (1, 2, 4), CM-7 (1), SA-1 (a), SA-4 (5), SI-7 (3), PM-6
Continuous Vulnerability Assessment and Remediation	RA-3 (a, b, c, d), RA-5 (a, b, 1, 2, 5, 6)
Malware Defenses	SC-18, SC-26, SI-3 (a, b, 1, 2, 5, 6)
Application Software Security	CM-7, RA-5 (a, 1), SA-3, SA-4 (3), SA-8, SI-3, SI-10
Wireless Device Control	AC-17, AC-18 (1, 2, 3, 4), SC-9 (1), SC-24, SI-4 (14, 15)
Data Recovery Capability	CP-9 (a, b, d, 1, 3), CP-10 (6)
Security Skills Assessment and Appropriate Training to Fill Gaps	AT-1, AT-2 (1), AT-3 (1)
Secure Configurations for Network Devices such as Firewalls, Routers, and Switches	AC-4 (7, 10, 11, 16), CM-1, CM-2 (1), CM-3 (2), CM-5 (1, 2, 5), CM-6 (4), CM-7 (1, 3), IA-2 (1, 6), IA-5, IA-8, RA-5, SC-7 (2, 4, 5, 6, 8, 11, 13, 14, 18), SC-9
Limitation and Control of Network Ports, Protocols, and Services	CM-6 (a, b, d, 2, 3), CM-7 (1), SC-7 (4, 5, 11, 12)
Controlled Use of Administrative Privileges	AC-6 (2, 5), AC-17 (3), AC-19, AU-2 (4)
Boundary Defense	AC-17 (1), AC-20, CA-3, IA-2 (1, 2), IA-8, RA-5, SC-7 (1, 2, 3, 8, 10, 11, 14), SC-18, SI-4 (c, 1, 4, 5, 11), PM-7
Maintenance, Monitoring, and Analysis of Security Audit Logs	AC-17 (1), AC-19, AU-2 (4), AU-3 (1,2), AU-4, AU-5, AU-6 (a, 1, 5), AU-8, AU-9 (1, 2), AU-12 (2), SI-4 (8)
Controlled Access Based on the Need to Know	AC-1, AC-2 (b, c), AC-3 (4), AC-4, AC-6, MP-3, RA-2 (a)
Account Monitoring and Control	AC-2 (e, f, g, h, j, 2, 3, 4, 5), AC-3
Data Loss Prevention	AC-4, MP-2 (2), MP-4 (1), SC-7 (6, 10), SC-9, SC-13, SC-28 (1), SI-4 (4, 11), PM-7
Incident Response Capability	IR-1, IR-2 (1), IR-4, IR-5, IR-6 (a), IR-8
Secure Network Engineering	IR-4 (2), SA-8, SC-7 (1, 13), SC-20, SC-21, SC-22, PM-7,
Penetration Tests and Red Team Exercises	CA-2 (1, 2), CA-7 (1, 2), RA-3, RA-5 (4, 9), SA-12 (7)

Classification inconsistencies

- Categories like "boundary defense," "data loss prevention," "penetration tests," "wireless device control," and "secure configuration" are presented in parallel, switching between classifying defenses by:
 - what piece of the network they protect
 - what they aim to protect against
 - how they are tested
 - what type of devices they apply to
 - whether or not they are properly configured

Confidentiality, Integrity, Availability

- The existing catalogs and classifications of defense reflect a lack of organizing high-level principles
- While confidentiality, integrity and availability are certainly desirable properties of a secure computer system, we can't actually sort out defenses that address each of those components individually